

Recycling of Co and Ni Free Batteries

Dr Michelle Lynch, CChem FRSC

ACI Battery Recycling Europe

1st & 2nd March 2023

CCD PARTNERS

UDE

ENGINEERED CLEANING PIONEERS

ЕしП

Email: anais.engelmann@enabledfuture.com

Enabled Future Limited Business Proposition

Optimising Technology Portfolios

New Membership Programme As Of November 2022

- The Circular Battery Economy
- Battery Chemistry by Metal Content
- Challenges of Meeting Demand from Mn Recycling
- Take Home Messages

The Circular Battery Economy

- Battery Chemistry by Metal Content
- Challenges of Meeting Demand from Mn Recycling
- Take Home Messages

NetZero Does not Enable the Circular Economy

- \clubsuit Non-Circular Net Zero is essentially a linear economy with a massive penalty for burying CO₂
- Business as usual already has implemented many efficiency improvements using catalysis, chemical and heat engineering; replacing fossil fuels with waste CO₂ and green hydrogen drops into the same downstream
- The Circular Economy reduces virgin material dependence and waste disposal
- Sustainability 4.0 "The repair and share economy" is a way by which we can limit the damage we do to the planet while maintaining a reasonable quality of life. It's a quietly growing movement.

Top Key Chemical Building Blocks

- Gigascale for chemicals in planning just as much batteries in the context of the energy transition
- The two largest chemical building blocks (ethylene and propylene) extensively used in batteries.
- C4s and aromatics needed e.g., for Styrene Butadiene Rubber (SBR) binders
- Also, carbons, petroleum pitch, petcoke, graphite, ammonia, chlor-alkali, sulphuric acid, lithium chemicals, fluorine chemicals, CMC thickeners, NMP solvent, specialty solvents and additives.

Materials for a Sodium Ion Battery

The largest single contributor to the batteries GWP is the hard carbon (30%)

It isn't all the metals, and it's not all about the carbon footprint

A vast amount of value is added to the metals before they become a battery

Nothing is waste until it's lost all its value to anyone who would value it

Copyright © 2023 Enabled Future Limited All Rights Reserved

Enabled

The Lifecycle Analysis of Batteries

	/	1	.0	.0	a.	1.0	-Q+	/	.e.	.0	0.	a.	6223	ar	
ns.	Na	WANT NO	WAR HO	MANC NO	APATH NO	PBA UN	MACO UFP	Na	MANE NO	ANY NO	Wather Ha	APART NO	PBA UN	MCo UFF	
v/kg			GWP	gCO2 eq	/kWh					ADP	gSb eq./	kWh			
00	37,709	34.805	36.770	33.540	27.623	37.701	26.114	0.0055	0.0024	0.0022	0.0033	0.0017	0.0031	0.0036	
10	35.036	32.294	34.182	31.246	25.765	35.028	24.393	0.0051	0.0023	0.0021	0.0031	0.0016	0.0029	0.0034	
20	32.808	30.202	32.025	29.334	24.217	32.801	22.959	0.0048	0.0022	0.0020	0.0029	0.0016	0.0028	0.0032	
30	30.923	28.432	30.200	27.716	22.907	30.916	21.746	0.0045	0.0021	0.0020	0.0028	0.0015	0.0027	0.0031	
40	29.307	26.914	28.636	26.329	21.784	29.301	20.706	0.0043	0.0020	0.0019	0.0027	0.0015	0.0026	0.0029	
50	27.907	25.599	27.281	25.127	20.811	27.901	19.805	0.0041	0.0020	0.0019	0.0026	0.0015	0.0025	0.0028	
60	26.681	24.448	26.094	24.076	19.959	26.676	19.016	0.0039	0.0019	0.0018	0.0025	0.0015	0.0024	0.0027	
70	25.600	23.433	25.048	23.148	19.208	25.595	18.320	0.0038	0.0019	0.0018	0.0024	0.0014	0.0023	0.0026	
80	24.639	22.530	24.117	22.323	18.540	24.635	17.701	0.0036	0.0018	0.0018	0.0024	0.0014	0.0023	0.0025	
90	23.779	21.722	23.285	21.585	17.942	23.775	17.148	0.0035	0.0018	0.0017	0.0023	0.0014	0.0022	0.0024	
00	23.006	20.996	22.536	20.921	17.405	23.001	16.650	0.0034	0.0018	0.0017	0.0023	0.0014	0.0022	0.0024	
10	22.305	20.338	21.858	20.320	16.918	22.301	16.199	0.0033	0.0017	0.0017	0.0022	0.0014	0.0021	0.0023	
20	21.669	19.740	21.242	19.774	16.476	21.665	15.790	0.0032	0.0017	0.0017	0.0022	0.0014	0.0021	0.0023	
30	21.088	19.194	20.679	19.275	16.072	21.084	15.415	0.0031	0.0017	0.0016	0.0021	0.0013	0.0021	0.0022	
40	20.555	18.694	20.163	18.818	15.701	20.551	15.073	0.0030	0.0016	0.0016	0.0021	0.0013	0.0020	0.0022	
50	20.065	18.234	19.689	18.397	15.361	20.061	14.757	0.0030	0.0016	0.0016	0.0021	0.0013	0.0020	0.0021	
60	19.612	17.809	19.251	18.009	15.046	19.609	14.466	0.0029	0.0016	0.0016	0.0020	0.0013	0.0020	0.0021	
70	19.193	17.415	18.846	17.649	14.755	19.190	14.196	0.0028	0.0016	0.0016	0.0020	0.0013	0.0019	0.0020	
80	18.804	17.050	18.469	17.315	14.485	18.801	13.946	0.0028	0.0016	0.0016	0.0020	0.0013	0.0019	0.0020	
v/kg	_		AP mm	hold H+ ed	a /kWh			-		HTP	mCTUh/	kWh	_		
00	0.250	0.260	0.178	0.181	0.124	0.211	0.139	0.028	0.065	0.017	0.018	0.012	0.029	0.019	
10	0.231	0.241	0.166	0.169	0.116	0.196	0.131	0.026	0.060	0.016	0.017	0.012	0.027	0.018	
20	0.216	0.224	0.156	0.159	0.110	0.184	0.123	0.025	0.055	0.016	0.016	0.012	0.025	0.017	
30	0.203	0.210	0.148	0.151	0.105	0.174	0.117	0.023	0.052	0.015	0.016	0.011	0.024	0.016	
40	0.192	0.198	0.141	0.143	0.100	0.165	0.112	0.022	0.048	0.015	0.015	0.011	0.023	0.015	
50	0.183	0.188	0.135	0.137	0.097	0.157	0.107	0.021	0.046	0.014	0.015	0.011	0.022	0.015	
60	0.175	0.179	0.130	0.132	0.093	0.150	0.103	0.020	0.043	0.014	0.014	0.010	0.021	0.014	
70	0.167	0.171	0.125	0.127	0.090	0.144	0.100	0.020	0.041	0.013	0.014	0.010	0.020	0.014	
80	0.161	0.164	0.121	0.123	0.088	0.139	0.096	0.019	0.039	0.013	0.014	0.010	0.020	0.013	
90	0.155	0.157	0.117	0.119	0.085	0.134	0.094	0.019	0.037	0.013	0.013	0.010	0.019	0.013	
00	0.150	0.152	0.114	0.115	0.083	0.130	0.091	0.018	0.036	0.013	0.013	0.010	0.018	0.013	
10	0.145	0.146	0.111	0.112	0.081	0.126	0.089	0.018	0.035	0.012	0.013	0.010	0.018	0.013	
20	0.140	0.142	0.108	0.109	0.080	0.123	0.087	0.017	0.033	0.012	0.013	0.010	0.017	0.012	
30	0.137	0.137	0.105	0.107	0.078	0.120	0.085	0.017	0.032	0.012	0.012	0.009	0.017	0.012	
40	0.133	0.134	0.103	0.104	0.076	0.117	0.083	0.016	0.031	0.012	0.012	0.009	0.017	0.012	
50	0.130	0.130	0.101	0.102	0.075	0.114	0.081	0.016	0.030	0.012	0.012	0.009	0.016	0.012	
60	0.126	0.127	0.099	0.100	0.074	0.112	0.080	0.016	0.029	0.012	0.012	0.009	0.016	0.012	
70	0.124	0.123	0.097	0.098	0.073	0.109	0.079	0.015	0.028	0.011	0.012	0.009	0.016	0.011	
100	0 1 21	0 1 2 1	0.005	CL CODE	0.073	0 107	0.077	0.015	00000	0.011	0.012	0.000	0.015	0.011	

Source (Peters, Baumann, Binder, & Weil, 2021)

Copyright © 2023 Enabled Future Limited All Rights Reserved

Enabled Future

- The Circular Battery Economy
- Battery Chemistry by Metal Content
- Challenges of Meeting Demand from Mn Recycling
- Take Home Messages

Metal Content by Battery Chemistry

Metal Content by Battery Chemistry

CODE	MOLAR MASS/G	CHEMICAL FORMULAE	WEIGHT % BATTERY METAL						
			, Li 🔬	Ni 🍬	Mn	Co	0		
NMC-442	96.18	LiNi _{0.4} Mn _{0.4} Co _{0.2} O ₂	7%	24%	23%	12%	34%		
NMC-111	96.46	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂	7%	20%	19%	20%	34%	9 x 8	
NMC-532	96.55	LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂	7%	30%	17%	12%	34%	Dominant	
NMC-622	96.93	LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂	7%	36%	11% 🔹	12%	34%	current formulations	
NMC-811	97.28	LiNi _{o.8} Mn _{o.1} Co _{o.1} O ₂	7%	48%	6%	6%	33%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
NMC-955	96.69	LiNi _{0.9} Mn _{0.05} Co _{0.05} O ₂	7%	54%	3%	3%	33%		
NMx-7525	96.69	LiNi _{0.75} Mn _{0.25} O ₂	7%	46%	14%	0%	33%		
NMC-631	95.03	LiNi _{0.6} Mn _{0.3} Co _{0.1} O ₂	7%	36%	17%	6%	34%		
LR-LNMO-11	96.87	Li ₁₁₆ Ni _{0.5} Mn _{0.5} O ₂	8%	30%	28%	0%	34%		
LR-NMC	85.29	Li _{1.20} Ni _{0.13} Mn _{0.54} Co _{0.13} O ₂	10%	9%	35%	9%	37%		
LR-LNMO-13	106.29	Li _{1.5} Ni _{0.25} Mn _{0.75} O _{2.5}	10%	14%	39%	0%	37%	Future formulations	
LR-NMx-37	95.00	Li _{1.3} Ni _{0.3} Mn _{0.7} O ₂	9%	18%	40%	0%	33%		
NMC-271	95.03	Li ₁₀ Ni _{0.2} Mn _{0.7} Co _{0.1} O ₂	7%	12%	41%	6%	34%		
LNMO-13	182.69	LiNi _{0.5} Mn _{1.5} O ₄	4%	16%	45%	0%	35%		

- The Circular Battery Economy
- Battery Chemistry by Metal Content
- Challenges of Meeting Demand from Mn Recycling
- Take Home Messages

Key Critical Raw Material Needs Include Manganese

Source: Benchmark Minerals, January 2023

Meeting Demand for Mn from Secondary Sources

Advantages:

High recycling rates Large Volumes Known specifications for NCM/NCA

Advantages: Many industry players Reasonable Volumes Uses same refineries as LIB black mass Suitable for LNMO

Disadvantages:

Only 3-12% Mn in majority of spent (NCM/NCA) batteries Recycling concentrated in Asian countries

Disadvantages:

Potential for wider range of impurities Not as suitable for high-Ni NCM/NCA Advantages: No need for a complex collection infrastructure Potential for large volumes with one specification Can also take in recycling

Disadvantages:

Lead time until fully operational Can it meet European demand?

Achieving Recycled Content in LNMO

- Cathodes need to have recycled content in line with EU Battery Passport regulations. Also, cell makers and EVs require recycled content to meet their ESG goals.
- The refiners send metal salts and solutions that have a % of recycled content mixed with virgin content.
- Some cell OEMs would like a closed loop supply, however this could only work for the largest companies, i.e., so refineries would need a separate line just for that OEMs materials. Not enough hydromet capacity as yet.
- A key activity ongoing at cathode materials producers is validation of specifications for material provided from recyclers/refiners.
- Specifications are still being developed for LNMO and they are based on old ones for NCM811, so they are not necessarily appropriate.
- Some impurities cause more trouble than others for LNMO. For instance, Co isn't as bad as Fe. Levels of <100 to >300 ppm are being seen. This can cause self-discharge and shelf-life issues in cells.
- The art is to go for the cheapest materials in the largest quantities evaluate those first, then consider smaller and/or more expensive feeds. The ideal is to have a constant supply of material within a range of specifications that are being developed during qualification tests.
- It may be difficult to keep recycled materials in Europe cars have a habit of going East, then South and the material may not be exported back.
- Not all the manganese has to come from other batteries, it could come in from the chemical industry and other sources such as sustainable mining projects e.g., Euro-Mn and others.
- Projects are only bankable if they have green electricity sources so refiners are competing for "green-electrons". Many new wind farms in Scandinavia are attracting battery metal refining capacity.

Cathode Material Specifications NCM811 vs. LNMO

Item Measured value		Unit	Instrument name/test method						
Surface	Black or brownish y sundries, no lumps,	rellow powder, no uniform color	Visual inspection						
Tap density 2.30±0.20		g/cm²	Vibration density meter						
D10	5.00±1.00	μm	Laser particle size meter						
D50	11.00±1.00	μm							
D90	20.00±2.00	μm							
Dmax	<45	um							
Specific area	≤11.50	m²/g							
	Ni	51.60±1.00	wt%						
	Со	7.50±0.80	wt%						
	Mn	2.90±0.80	wt%						
	Fe	≤50	ppm						
	Na	≤300	ppm						
	Ca	≤100	ppm						
-	Mg	≤100	ppm						
Elemental	Cu	≤20	ppm						
COLISCON	Zn	≤20	ppm						
	Pd	≤20	ppm						
	Cd	≤20	ppm						
	Cr	≤20	ppm						
	Fe+Cr+Zn+ex.Ni	<80	ppb						
	H ₂ O	<0.80	ppm						
	S	<0.1500	ppm						
Particl	e morphology	Spherical or quasi-spherical, with good sphericity and consistency, basically free of micropowder							
Crys	tal structure	No impurity peaks							

The specification for LNMO is a little easier on Fe – this is still being tested though.

Some of the headaches are Zn, Ca, Mg, P and F

Manganese Recycling Challenges

- Mn is the last priority for a hydromet after Ni, Co and Li.
- It costs as much to recycle Mn as it does Ni and Co combined.
- Mn doesn't get recycled back to the grade needed for most batteries (NCM, NCA).
- Usually end up getting Mn(OH)x when the carbonates would be preferable.
- ✤ Need to rationalize different Mn-rich precipitates and process centrally.
- Pyro units have a Mn-containing slag which is in the form of oxides and silicates, goes into construction materials currently. With some upgrading, could be viable for LNMO/LMFP.
- As long the feeds don't have too much Fe or fluorine, they can be viable for upgrading companies can also choose to do an extra upgrade themselves then send for refining needs discussion between the companies and the refiners.
- Blending of Mn salts from different recycled materials with purer feeds of Mn e.g., from the mine tailings can be a useful strategy but need to demonstrate it.
- Cathode-to-cathode is one useful strategy but difficult for LNMO where there is no EoL scrap.
- There is competition from other industries e.g. steel alloys and taking the feed into batteries could cause a structural deficit there.
- ✤ We still need much higher-grade recycled Mn for NCM/NCA. Not clear where it's coming from

Key Takeaways

- Cathodes with lower Ni/Co-Free chemistries are growing rapidly e.g., LNMO, NMx and LMFP
- LNMO will be the largest user of Mn in batteries by 2040, even more than high nickel formulations
- The need to meet demand for recycled materials in line with sustainability/ESG goals will require that much more secondary Mn is available
- Recycled Mn is expensive and could be detrimental to battery price competitiveness in the EU

 large need to bring down the price.
- Much of the effort needed isn't necessarily technical it's logistical and requires cooperation between different stakeholders.
- There is a need to ensure that Mn doesn't end up in landfill and that is actually recycled ESG practices ought to benefit the industry here.
- There are opportunities however we must be proactive in order to realise them.

Enabled Future Limited (EFL) is a consultancy which works to **Optimise** Technology Portfolios with staksholders involved in the sustainable production, use and recycling of chemicals, catalysts, plastics and polymers, energy carriers and valuable metals.

Discover the range of services including included in the new EFL Company Membership Programme to be launched in November 2022.

Don't miss out on the limited time offer of 3-month's free membership which is available until 1st November 2022!

Copyright © Enabled Future Limited. All Rights Reserved

Thank you for listening!

Catch us at Battery Tech Expo, Silverstone on 20th April 2023 Stand M12 <u>https://www.batterytechexpo.co.uk/</u>

Catch us at the Vehicle Electrification Expo/Advanced Material Show at the Birmingham NEC, 28th & 29th June, 2023 <u>Visit the Vehicle Electrification Expo 2023 (ve-expo.com)</u>

The Advanced Materials Show I NEC, Birmingham, 28th & 29th June 2023